Anti-Infectives Research

CHEMISTRY, BIOCHEMISTRY, PHARMACOLOGY, PROTEIN SURFACE MIMETICS, GPCR REGULATION, ENZYME REGULATION, ANTI-INFLAMMATORY RESEARCH, ANTI-INFECTIVES RESEARCH, ANTI-CANCER RESEARCH, NEURODEGENERATIVE RESEARCH, CARDIOVASCULAR RESEARCH



1) Flaviviral protease and fusion inhibitors (e.g. Dengue and West Nile Viruses)

2) Respiratory Syncytial Virus inhibitors (RSV)

  3) Immunodeficiency Virus inhibitors (HIV, SIV)

  4) Antimalarial and antischistosomal (inhibitors of Plasmodium and Schistoma  proteins,  HDACs, proteases)

  5) Quorum Sensing Pheromones (Competence Stimulating Peptides)

  6) Bacterial Synthesis of Vitamins (T cell activation) and inhibition of bacterial infections

 

PUBLICATIONS:

BACTERIA 

Identification and phenotype of MAIT cells in cattle and their response to bacterial infections. Edmans MD, Connelley TK, Jayaraman S, Vrettou C, Vordermeier M, Mak JYW, Liu L, Fairlie DP, Maze EA, Chrun T, Klenerman P, Eckle SBG, Tchilian E, Benedictus L. Front Immunol 2021, 12, 627173.

Francisella tularensis induces Th1 like MAIT cells conferring protection against systemic and local infection. Zhao Z, Wang H, Shi M, Zhu T, Pediongco T, Lim XY, Meehan BS, Nelson AG, Fairlie DP, Mak JYW, Eckle SBG, Moreira MdL, Tumpach C, Bramhall M, Williams CG, Lee HJ, Haque A, Evrard M, Rossjohn J, McCluskey J, Corbett AJ, Chen Z. Nature Commun 2021, in press.

Human MAIT cell cytolytic effector proteins synergize to overcome carbapenem resistance in Escherichia coli.Boulouis C, Sia WR, Gulam YH, Teo JQM, Phan TK, Mak JYW, Fairlie DP, Poon IKH, Koh TH, Bergman P, Wang L-F, Kwa ALH, Sandberg JK, Leeansyah E. PLOS Biol 2020, 18, e3000644.

Lipopolysaccharide promotes Drp1-dependent mitochondrial fission and associated inflammatory responses in macrophages. Kapetanovic R, Afroz SF, Ramnath D, Lawrence G, Okada T, Curson J, de Bruin J, Fairlie DP, Schroder K, St. John J, Blumenthal A, Sweet MJ. Immunol Cell Biol 2020, 98, 528-539.

Artificially induced MAIT cells inhibit M. bovis BCG but not M. tuberculosis during in vivo pulmonary infection.Yu H, Yang A, Derrick S, Mak JYW, Liu L, Fairlie DP, Cowley S. Sci Rep 2020, 10, 13579.

IL-23 costimulates antigen-specific MAIT cell activation and enables vaccination against bacterial infection. Wang H, Kjer-Nielsen L, Shi M, D’Souza C, Pediongco TJ, Cao H, Kostenko L, Lim X, Eckle SBG, Meehan BS, Zhu T, Wang Z, Zhao Z, Mak JYW, Fairlie DP, Teng MWL, Rossjohn J, Yu D, Fazekas de St Groth B, Lovrecz G, Lu L, McCluskey J, Strugnell RA, Corbett AJ, Chen Z. Science Immunol 2019, 4(41), eaaw0402. 

Structure-activity relationships of wollamide cyclic hexapeptides with activity against drug-resistant and intracellular Mycobacterium tuberculosis. Khalil ZG, Hill TA, De Leon Rodriguez LM, Lohman RJ, Hoang HN, Reiling N, Hillemann D, Brimble MA, Fairlie DP, Blumenthal A, Capon RJ. Antimicrob Agents Chemother 2019, Feb 26;63(3). pii: e01773-18.

Computer modelling and synthesis of deoxy and monohydroxy analogues of a ribitylaminouracil bacterial metabolite that potently activates human T cells. Ler GJM, Xu W, Mak JYW, Liu L, Bernhardt PV, Fairlie DP. Chem Eur J 2019, 25(68), 15594-15608. 

MAIT cells protect against pulmonary Legionella longbeachae infection. Wang H, D'Souza C, Lim XY, Kostenko L, Pediongco TJ, Eckle SBG, Meehan BS, Shi M, Wang N, Li S, Liu L, Mak JYW, Fairlie DP, Iwakura Y, Gunnersen JM, Stent AW, Godfrey DI, Rossjohn J, Westall GP, Kjer-Nielsen L, Strugnell RA, McCluskey J, Corbett AJ, Hinks TSC, Chen Z. Nature Commun 2018, 9, 3350. 

An overview on the identification of MAIT cell antigens. Kjer-Nielsen L, Corbett AJ, Chen Z, Liu L, Mak JY, Godfrey DI, Rossjohn J, Fairlie DP, McCluskey J, Eckle SB. Immunol Cell Biol 2018, 96, 573-587.

Recipient mucosal-associated invariant T cells control GVHD within the colon. Varelias A, Bunting MD, Ormerod KL, Koyama M, Olver SD, Straube J, Kuns RD, Robb RJ, Henden AS, Cooper L, Lachner N, Gartlan KH, Lantz O, Kjer-Nielsen L, Mak JY, Fairlie DP, Clouston AD, McCluskey J, Rossjohn J, Lane SW, Hugenholtz P, Hill GR. J Clin Invest 2018,128,1919-1936.

Mucosal-Associated Invariant T Cells Augment Immunopathology and Gastritis in Chronic Helicobacter pylori Infection. D'Souza C, Pediongco T, Wang H, Scheerlinck JY, Kostenko L, Esterbauer R, Stent AW, Eckle SBG, Meehan BS, Strugnell RA, Cao H, Liu L, Mak JYW, Lovrecz G, Lu L, Fairlie DP, Rossjohn J, McCluskey J, Every AL, Chen Z, Corbett AJ. J Immunol 2018, 200,1901-1916. 

Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals.Chen Z, Wang H, D'Souza C, Sun S, Kostenko L, Eckle SB, Meehan BS, Jackson DC, Strugnell RA, Cao H, Wang N, Fairlie DP, Liu L, Godfrey DI, Rossjohn J, McCluskey J, Corbett AJ. Mucosal Immunol 2017, 10, 58-68.

Total Synthesis of Mycobacterium tuberculosis Dideoxymycobactin-838 and Stereoisomers: Diverse CD1a-Restricted T Cells Display a Common Hierarchy of Lipopeptide Recognition. Cheng JM, Liu L, Pellicci DG, Reddiex SJ, Cotton RN, Cheng TY, Young DC, Van Rhijn I, Moody DB, Rossjohn J, Fairlie DP, Godfrey DI, Williams SJ. Chemistry 2017, 23(7):1694-1701. 

Tolyporphin Macrocycles from the Cyanobacterium Tolypothrix nodosa Selectively Bind Copper and Silver and Reverse Multidrug Resistance.Prinsep MR, Appleton TG, Hanson GR, Lane I, Smith CD, Puddick J, Fairlie DP. Inorg Chem 2017, 56, 5577-5585. 

T cell activation by transitory neo-antigens derived from distinct microbial pathways. Corbett AJ, Eckle SBG, Birkinshaw RW, Liu L, Patel O, Mahony J, Chen Z, Reantragoon R, Meehan B, Cao H, Williamson NA, Strugnell RA, Sinderen DV, Mak JYW, Fairlie DP*, Lars Kjer-Nielsen*, Rossjohn J*, McCluskey J*. Nature 2014, 509(7500), 361-365. 

Crystal Structure of the Dithiol Oxidase DsbA Enzyme from Proteus Mirabilis Bound Non-Covalently to an Active Site Peptide Ligand. Kurth F, Duprez W, Premkumar L, Schembri M, Fairlie DP, Martin JL. J Biol Chem 2014, 289, 19810-19822.

A Molecular Basis Underpinning the T Cell Heterogeneity of Mucosal Associated Invariant T Cells.  Eckle SBG, Birkinshaw RW, Kostenko L, Corbett AJ, McWilliam HEG, Reantragoon R, Chen Z, Gherardin NA, Beddoe T, Liu L, Patel O, Meehan B, Fairlie DP, Villadangos JA, Godfrey DI, Kjer-Nielsen L, McCluskey J, Rossjohn J. J Exp Med 2014, 211, 1585-1600.

Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Patel O, Kjer-Nielsen L, Nours JL, Eckle SBG, Bikinshaw R, Beddoe T, Corbett AJ, Liu L, Miles JJ, Mehan B, Reantragoon R, Sandoval-Romero ML, Sullivan LC, Brooks AG, Chen Z, Fairlie DP, McCluskey J, Rossjohn J. Nature Commun. 2013, doi: 10.1038/ncomms3142.

Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases. Premkumar L, Heras B, Duprez W, Walden P, Halili M, Kurth F, Fairlie DP, Martin JL. Acta Cryst Sect D 2013, D69, 1981–1994.

Comparative Sequence, Structure and Redox Analyses of Klebsiella pneumoniae DsbA Show That Anti-Virulence Target DsbA Enzymes Fall into Distinct Classes. Kurth F, Rimmer K, Premkumar L, Mohanty B, Duprez W, Halili MA, Shouldice SR, Heras B, Fairlie DP, Scanlon MJ, Martin JL. PLoS One, 2013, 8(11), e80210. 

Targeting quorum sensing and competence stimulation for antibacterial chemotherapy. Shepherd NE, Harrison RS, Fairlie DP. Curr Drug Targets. 2012, 13(11), 1348-1359.

MR1 presents microbial vitamin B metabolites to MAIT cells. Kjer-Nielsen L, Patel O, Nours JL, Meehan B, Corbett AJ, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RAJ, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J. Nature 2012, 491, 717-723.

Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency.Harrison RS, Shepherd NE, Hoang HN, Ruiz-Gómez G, Hill TA, Driver RW, Desai VS, Young PR, Abbenante G, Fairlie DP. Proc Natl Acad Sci U S A2010107, 11686-11691.

 

DENGUE, WEST NILE, INFLUENZA, BAT VIRUSES

Virus-mediated suppression of the antigen presentation molecule MR1. McSharry BP, Samer C, McWilliam HEG, Ashley CL, Yee MB, Steain M, Liu L, Fairlie DP, Kinchington PR, McCluskey J, Abendroth A, Villadangos JA, Rossjohn J, Slobedman B. Cell Reports 2020, 30, 2948-2962.e4.

MR1-Restricted T Cells with MAIT-like Characteristics Are Functionally Conserved in the Pteropid Bat Pteropus alecto. Leeansyah E, Hey YY, Sia WR, Ng JHJ, Gulam MY, Boulouis C, Zhu F, Ahn M, Mak JYW, Fairlie DP, Kwa ALH, Sandberg JK, Wang LF. iScience 2020, 23, 101876. 

Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. Loh L, Wang Z, Sant S, Koutsakos M, Jegaskanda S, Corbett AJ, Liu L, Fairlie DP, Crowe J, Rossjohn J, Xu J, Doherty PC, McCluskey J, Kedzierska K. Proc Natl Acad Sci U S A 2016,113,10133-8. 

Product release is rate-limiting for catalytic processing by the Dengue virus protease. Shannon AE, Pedroso MM, Chappell KJ, Watterson D, Liebscher S, Kok WM, Fairlie DP, Schenk G, Young PR. Sci Rep 2016, 6, 37539. 

An interaction between the methyltransferase and RNA dependent RNA polymerase domains of the West Nile virus NS5 protein. Tan CS, Hobson-Peters JM, Stoermer MA, Fairlie DP, Khromykh AA, Hall RA. J Gen Virol 201394, 1961-1971. 

In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Kampmann T, Yennamalli R, Campbell P, Stoermer MJ, Fairlie DP, Kobe B, Young PR. Antiviral Res. 2009, 84, 234-241. 

Structure of West Nile virus NS3 protease: ligand stabilization of the catalytic conformation. Robin G, Chappell K, Stoermer MJ, Hu SH, Young PR, Fairlie DP, Martin JL. J Mol Biol. 2009, 385, 1568-1577.

Potent cationic inhibitors of West Nile virus NS2B/NS3 protease with serum stability, cell permeability and antiviral activity. Stoermer MJ, Chappell KJ, Liebscher S, Jensen CM, Gan CH, Gupta PK, Xu WJ, Young PR, Fairlie DP. J Med Chem. 2008, 51, 5714-5721.

Mutagenesis of the West Nile virus NS2B cofactor domain reveals two regions essential for protease activity. Chappell KJ, Stoermer MJ, Fairlie DP, Young PR. J Gen Virol. 2008, 89, 1010-1014.

A dual-purpose synthetic colloidal platform for protease mapping: substrate profiling for Dengue and West Nile virus proteases. Marcon L, Kozak D, Battersby BJ, Chappell KJ, Fairlie DP, Young P, Trau M. Anal Biochem. 2008, 376, 151-153.

West Nile Virus NS2B/NS3 protease as an antiviral target. Chappell KJ, Stoermer MJ, Fairlie DP, Young PR. Curr Med Chem. 2008, 15, 2771-2784.

Substrate specificity of recombinant dengue 2 virus NS2B-NS3 protease: influence of natural and unnatural basic amino acids on hydrolysis of synthetic fluorescent substrates. Gouvea IE, Izidoro MA, Judice WA, Cezari MH, Caliendo G, Santagada V, dos Santos CN, Queiroz MH, Juliano MA, Young PR, Fairlie DP, Juliano L. Arch Biochem Biophys. 2007, 457, 187-196.

Generation and characterization of proteolytically active and highly stable truncated and full-length recombinant West Nile virus NS3. Chappell KJ, Stoermer MJ, Fairlie DP, Young PR. Protein Expr Purif. 2007, 53, 87-96.

Insights to substrate binding and processing by West Nile Virus NS3 protease through combined modeling, protease mutagenesis, and kinetic studies. Chappell KJ, Stoermer MJ, Fairlie DP, Young PR. J Biol Chem. 2006, 281, 38448-38458.

Site-directed mutagenesis and kinetic studies of the West Nile Virus NS3 protease identify key enzyme-substrate interactions. Chappell KJ, Nall TA, Stoermer MJ, Fang NX, Tyndall JD, Fairlie DP, Young PR. J Biol Chem. 2005, 280, 2896-2903.

Enzymatic characterization and homology model of a catalytically active recombinant West Nile virus NS3 protease. Nall TA, Chappell KJ, Stoermer MJ, Fang NX, Tyndall JD, Young PR, Fairlie DP. J Biol Chem. 2004, 279, 48535-48542.

Catalytically active Dengue virus NS3 protease forms aggregates that are separable by size exclusion chromatography. Arakaki TL, Fang NX, Fairlie DP, Young PR, Martin JL. Protein Expr Purif. 2002, 25, 241-247.

Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. Leung D, Schroder K, White H, Fang NX, Stoermer MJ, Abbenante G, Martin JL, Young PR, Fairlie DP. J Biol Chem. 2001, 276, 45762-45771. [>100 citations]   

Homology model of the dengue 2 virus NS3 protease: putative interactions with both substrate and NS2B cofactor. Brinkworth RI, Fairlie DP, Leung D, Young PR. J Gen Virol. 1999, 80, 1167-1177.

 

RESPIRATORY SYNCITIAL VIRUS

 Modular alpha-helical mimetics with antiviral activity against respiratory syncitial virus. Shepherd NE, Hoang HN, Desai VS, Letouze E, Young PR, Fairlie DP. J Am Chem Soc 2006, 128, 13284-13289.

Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency. Harrison RS, Shepherd NE, Hoang HN, Ruiz-Gómez G, Hill TA, Driver RW, Desai VS, Young PR, Abbenante G, Fairlie DP. Proc Natl Acad Sci USA 2010, 107, 11686-11691. 

IMMUNODEFICIENCY VIRUSES

Oxazole-benzenesulfonamide derivatives inhibit HIV-1 reverse transcriptase interaction with cellular eEF1A and reduce viral replication.Rawle DJ, Li D, Wu Z, Wang L, Choong M, Lor M, Reid RC, Fairlie DP, Harris J, Tachedjian G, Poulsen SA, Harrich D. J Virol 2019, 93(12), pii: e00239-19. 

MAIT Cells upregulate α4β7 in response to acute Simian Immunodeficiency Virus/Simian HIV infection but are resistant to peripheral depletion in pigtail macaques. Juno JA, Wragg KM, Amarasena T, Meehan BS, Mak JYW, Liu L, Fairlie DP, McCluskey J, Eckle SBG, Kent SJ. J Immunol 2019, 202, 2105-2120. 

Helical cyclic pentapeptides constrain HIV-1 Rev peptide for enhanced RNA binding. Harrison RS, Shepherd NE, Hoang HN, Beyer RL, Ruiz-Gómez G, Kelso MJ, WM Kok, TA Hill, Abbenante G, Fairlie DP. Helical cyclic pentapeptides constrain HIV-1 Rev peptide for enhanced RNA binding. Tetrahedron 2014, 70, 7645-7650 [special issue on cyclic peptides].

Update 1 of: Proteases universally recognize beta strands in their active sites. Madala PK, Tyndall JD, Nall T, Fairlie DP. Chem Rev. 2010, 110(6), PR1-31. [>100 citations]   

Update 1 of: Beta-strand mimetics. Loughlin WA, Tyndall JD, Glenn MP, Hill TA, Fairlie DP. Chem Rev. 2010, 110(6), PR32-69. [>100 citations]  

Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency. Harrison RS, Shepherd NE, Hoang HN, Ruiz-Gómez G, Hill TA, Driver RW, Desai VS, Young PR, Abbenante G, Fairlie DP. Proc Natl Acad Sci U S A. 2010, 107, 11686-11691.

Crystal structures of highly constrained substrate and hydrolysis products bound to HIV-1 protease. Implications for the catalytic mechanism. Tyndall JD, Pattenden LK, Reid RC, Hu SH, Alewood D, Alewood PF, Walsh T, Fairlie DP, Martin JL. Biochemistry. 2008, 47, 3736-3744.

Potencies of human immunodeficiency virus protease inhibitors in vitro against Plasmodium falciparum and in vivo against murine malaria. Andrews KT, Fairlie DP, Madala PK, Ray J, Wyatt DM, Hilton PM, Melville LA, Beattie L, Gardiner DL, Reid RC, Stoermer MJ, Skinner-Adams T, Berry C, McCarthy JS. Antimicrob Agents Chemother. 2006, 50, 639-648.

Protease inhibitors in the clinic. Abbenante G, Fairlie DP. Med Chem. 2005, 1, 71-104. [>100 citations]   

Countering cooperative effects in protease inhibitors using constrained beta-strand-mimicking templates in focused combinatorial libraries. Reid RC, Pattenden LK, Tyndall JD, Martin JL, Walsh T, Fairlie DP. J Med Chem. 2004, 47, 1641-1651.

Conformational selection of inhibitors and substrates by proteolytic enzymes: implications for drug design and polypeptide processing. Fairlie DP, Tyndall JD, Reid RC, Wong AK, Abbenante G, Scanlon MJ, March DR, Bergman DA, Chai CL, Burkett BA. J Med Chem. 2000, 43, 1271-1281. [>100 citations]   

Synthesis, stability, antiviral activity, and protease-bound structures of substrate-mimicking constrained macrocyclic inhibitors of HIV-1 protease. Tyndall JD, Reid RC, Tyssen DP, Jardine DK, Todd B, Passmore M, March DR, Pattenden LK, Bergman DA, Alewood D, Hu SH, Alewood PF, Birch CJ, Martin JL, Fairlie DP. J Med Chem. 2000, 43, 3495-3504. 

Protease inhibitors: current status and future prospects. Leung D, Abbenante G, Fairlie DP. J Med Chem. 2000, 43, 305-341. [>1000 citations]   

Molecular recognition of macrocyclic peptidomimetic inhibitors by HIV-1 protease. Martin JL, Begun J, Schindeler A, Wickramasinghe WA, Alewood D, Alewood PF, Bergman DA, Brinkworth RI, Abbenante G, March DR, Reid RC, Fairlie DP. Biochemistry. 1999, 38, 7978-7988.

Substrate-Based Cyclic Peptidomimetics of Phe-Ile-Val That Inhibit HIV-1 Protease Using A Novel Enzyme-Binding Mode, March, D. R.; Abbenante, G.; Bergman, D. A.; Brinkworth, R. I.; Wickramasinghe, W. A.; Begun, J.; Martin, J. L.; Fairlie, D. P. J. Am. Chem. Soc.1996, 118, 3375-79.

A Novel Bicyclic Enzyme Inhibitor As A Consensus Peptidomimetic For The Receptor-Bound Conformations of Twelve Peptidic Inhibitors Of HIV-1 Protease, Reid, R. C.; March, D. R.; Dooley, M.; Bergman, D. A.; Abbenante, G.; Fairlie, D. P. J. Am. Chem. Soc. 1996, 118, 8511-8517.

Structure-Activity Relationships for Macrocyclic Inhibitors Of HIV-1 Protease, Abbenante, G.; Bergman, D. A.; Brinkworth, R. I.; March, D. R.; Reid, R. C.; Hunt, P. A.; James, I. W.; Dancer, R. J.; Garnham, B.; Stoermer, M. L. Fairlie DP. Bioorg. Med. Chem. Lett. 1996, 6, 2531-2536.

Regioselective Structural and Functional Mimicry of Peptides. Design of Hydrolytically Stable Cyclic Peptidomimetic Inhibitors of HIV-1 Protease,  Abbenante, G.; March, D. R.; Bergman, D. A.; Hunt, P. A.; Garnham, B.; Dancer, R. J.; Martin, J. L.; Fairlie, D. P. J. Am. Chem. Soc. 1995, 117, 10220-10226.

NMR solution structure of the RNA-binding peptide from human immunodeficiency virus (type 1) Rev. Scanlon MJ, Fairlie DP, Craik DJ, Englebretsen DR, West ML. Biochemistry. 1995, 34, 8242-8249.

Hydroxyquinones are competitive non-peptide inhibitors of HIV-1 proteinase. Brinkworth RI, Fairlie DP. Biochim Biophys Acta. 1995, 1253, 5-8.

Macrocyclic Peptidomimetics : Forcing Peptides into Bioactive Conformations, Fairlie, D. P.; Abbenante, G.; March, D. Curr. Med. Chem. 1995, 2, 672-705. [>100 citations]   

Targeting HIV-1 protease: a test of drug-design methodologies. West ML, Fairlie DP. Trends Pharmacol Sci. 1995, 16, 67-75. [>100 citations] 


MALARIA, SCHISTOSOMIASIS, HOOKWORMS

Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth. Chua MJ, Arnold MS, Xu W, Lancelot J, Lamotte S, Späth GF, Prina E, Pierce RJ, Fairlie DP, Skinner-Adams TS, Andrews KT. Int J Parasitol Drugs Drug Resist 2017, 7(1):42-50. 

Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules.Trenholme K, Marek L, Duffy S, Pradel G, Fisher G, Hansen FK, Skinner-Adams TS, Butterworth A, Julius Ngwa C, Moecking J, Goodman CD, McFadden GI, Sumanadasa SD, Fairlie DP, Avery VM, Kurz T, Andrews KT. Antimicrob Agents Chemother. 2014, 58, 3666-3678.

Towards Histone Deacetylase Inhibitors as New Antimalarial Drugs. Andrews KT, Tran TN, Fairlie DP. Curr Pharm Des. 2012, 18, 3467-3479. 

Antimalarial Activity of the Anticancer Histone Deacetylase Inhibitor SB939. Sumanadasa SD, Goodman CD, Lucke AJ, Skinner-Adams T, Sahama I, Haque A, Do TA, McFadden GI, Fairlie DP, Andrews KT. Antimicrob Agents Chemother. 2012, 56, 3849-3856.

Comparative gene expression profiling of P. falciparum malaria parasites exposed to three different histone deacetylase inhibitors. Andrews KT, Gupta AP, Tran TN, Fairlie DP, Gobert GN, Bozdech Z. PLoS One. 2012, 7(2), e31847.

Ex vivo activity of histone deacetylase inhibitors against multidrug-resistant clinical isolates of Plasmodium falciparum and P. vivax. Marfurt J, Chalfein F, Prayoga P, Wabiser F, Kenangalem E, Piera KA, Fairlie DP, Tjitra E, Anstey NM, Andrews KT, Price RN. Antimicrob Agents Chemother. 2011, 55, 961-966.

Antimalarial histone deacetylase inhibitors containing cinnamate or NSAID components. Wheatley NC, Andrews KT, Tran TL, Lucke AJ, Reid RC, Fairlie DP. Bioorg Med Chem Lett. 2010, 20, 7080-7084.

Targeting histone deacetylase inhibitors for anti-malarial therapy. Andrews KT, Tran TN, Wheatley NC, Fairlie DP. Curr Top Med Chem. 2009, 9, 292-308.

Potent antimalarial activity of histone deacetylase inhibitor analogues. Andrews KT, Tran TN, Lucke AJ, Kahnberg P, Le GT, Boyle GM, Gardiner DL, Skinner-Adams TS, Fairlie DP. Antimicrob Agents Chemother. 2008, 52, 1454-1461.

Potencies of human immunodeficiency virus protease inhibitors in vitro against Plasmodium falciparum and in vivo against murine malaria. Andrews KT, Fairlie DP, Madala PK, Ray J, Wyatt DM, Hilton PM, Melville LA, Beattie L, Gardiner DL, Reid RC, Stoermer MJ, Skinner-Adams T, Berry C, McCarthy JS. Antimicrob Agents Chemother. 2006, 50, 639-648.

Hookworm aspartic protease, Na-APR-2, cleaves human hemoglobin and serum proteins in a host-specific fashion. Williamson AL, Brindley PJ, Abbenante G, Datu BJ, Prociv P, Berry C, Girdwood K, Pritchard DI, Fairlie DP, Hotez PJ, Zhan B, Loukas A. J Infect Dis. 2003, 187, 484-494.

Cleavage of hemoglobin by hookworm cathepsin D aspartic proteases and its potential contribution to host specificity. Williamson AL, Brindley PJ, Abbenante G, Prociv P, Berry C, Girdwood K, Pritchard DI, Fairlie DP, Hotez PJ, Dalton JP, Loukas A. FASEB J. 2002, 16, 1458-1460.

Proteolysis of human hemoglobin by schistosome cathepsin D. Brindley PJ, Kalinna BH, Wong JY, Bogitsh BJ, King LT, Smyth DJ, Verity CK, Abbenante G, Brinkworth RI, Fairlie DP, Smythe ML, Milburn PJ, Bielefeldt-Ohmann H, Zheng Y, McManus DP. Mol Biochem Parasitol. 2001, 112, 103-112.

Anti-malarial effect of histone deacetylation inhibitors and mammalian tumour cytodifferentiating agents.
Andrews KT, Walduck A, Kelso MJ, Fairlie DP, Saul A, Parsons PG. Int J Parasitol. 2000, 30, 761-768.

 

BLOWFLIES

Insecticidal activities of histone deacetylase inhibitors against a dipteran parasite of sheep, Lucilia cuprina. Bagnall NH, Hines BM, Lucke AJ, Gupta PK, Reid RC, Fairlie DP, Kotze AC. Int J Parasitol Drugs Drug Resist 2017, 7, 51-60. 

Histone deacetylase enzymes as drug targets for the control of the sheep blowfly, Lucilia cuprina. Kotze AC, Hines BM, Bagnall NH, Anstead CA, Gupta P, Reid RC, Ruffell AP, Fairlie DP. Int J Parasitol Drugs Drug Resist 2015, 5, 201-8.